
A phase-dependent and EMG-driven variable stiffness control
strategy for upper limb rehabilitation robot

Pengcheng Li, Member, IEEE, Shuxiang Guo∗, Fellow, IEEE, and Chunying Li∗, Member, IEEE

Abstract— Bilateral training is a widely adopted ap-
proach in upper limb rehabilitation due to its effective-
ness and ease of implementation. Variable stiffness ac-
tuators enhance this approach by facilitating compliant
human-machine interaction, ensuring both comfort and
safety. However, optimizing stiffness levels for individ-
ual subjects to maximize training effectiveness remains
a significant challenge. The difficulty of different task
phases varies across subjects, necessitating customized
robotic assistance. This paper proposes an adaptive
stiffness modulation strategy that leverages the cyclic
nature of rehabilitation tasks. An adaptive frequency
oscillator is employed for real-time phase detection,
while a tuning rule, based on motion tracking error
and muscular activation, dynamically adjusts stiffness
levels. Experimental validation with two participants
demonstrated that the proposed strategy effectively
promotes affected arm motion and tailors assistance
to the user’s specific needs.

I. INTRODUCTION

Stroke has become a major global health threat, af-

fecting millions of people worldwide [1]. Most stroke

survivors experience neurological impairments, par-

ticularly hemiplegia. Rehabilitation training with

physical therapists (PTs) is crucial for restoring up-

per limb function in stroke survivors. However, the

repetitive and cyclic nature of these exercises places a

significant physical burden on PTs [2]. Consequently,

there is a growing trend toward utilizing rehabilitation

robots to assist PTs in delivering physical therapy.

Robot-assisted rehabilitation can be divided into

two types: passive and active training strategies [3].

The passive training strategy assists movement along

a predefined trajectory, helping to improve motor
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abilities, while the active training strategy encourages

patients to exercise voluntarily, with the robot pro-

viding only the necessary assistance. Active training

has shown greater effectiveness in rehabilitation, as

it promotes patient engagement, enhances neuroplas-

ticity, and improves motor control in people who

suffered from neuromuscular impairments [4]. A ma-

jor challenge in robot-assisted active rehabilitation,

however, is accurately detecting the patient’s motion

intentions during therapy. Bilateral training addresses

this challenge by using the motion of the healthy limb

as a reference for training the affected limb, providing

an intuitive and effective approach that enables users

to control the robot’s movements naturally [5][6].

Electromyography (EMG) is a bio-electrical sig-

nal that reflects the activation level of muscles [7].

EMG-driven control for rehabilitation robots has been

widely explored by researchers to estimate joint

motions [8][9], movement intentions [10] and mus-

cle force [11]. EMG can also be used to estimate

joint stiffness, which plays a key role in safe and

effective therapy. To ensure safety during physical

therapy with rehabilitation robots, compliant mech-

anisms have been incorporated into their designs,

with variable stiffness actuators being among the

most popular [12]. Unlike traditional stiff actuators,

which hold a fixed position or follow a trajectory

with high rigidity, variable stiffness actuators enable

compliant and safe human-machine interaction by

avoiding confrontation between the user and the

machine. Variable stiffness control can mimic the

stiffness of a human joint [11] or enhance voluntary

patient participation [13][14], based on EMG signals

from the contralateral side or motion errors.

Given that each patient has unique needs, the

required assistance during training varies accordingly.

The concept of assist-as-needed (AAN), which pro-

vides minimal assistance to maximize patient effort

and enhance training effectiveness, has gained con-

siderable attention [15]. Although the motion error

has been used to adjust the level of resistance to

iteratively achieve the AAN, this approach is not
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optimal, as adjustments occur only after the error is

detected, resulting in a time delay in assistance modu-

lation. To effectively implement AAN, it is essential

to consider the cyclic nature of movements during

rehabilitation. This paper proposes an EMG-driven,

phase-dependent variable stiffness controller designed

to enhance the effectiveness of bilateral upper limb

rehabilitation by employing an AAN strategy. The

healthy limb’s motion trajectory is used as the ref-

erence for the affected limb. During training, the

frequency and phase of the task are extracted using

an adaptive oscillator (AO), while the initial stiffness

profile is determined by an EMG-based arm model.

The stiffness is then dynamically adjusted throughout

the task based on the motion error between the two

arms at the same task phase. The contributions of this

paper are outlined as follows:

1) A phase-dependent stiffness modulation strategy

for bilateral upper limb rehabilitation is proposed,

which adjusts the level of assistance based on the

user’s muscular activation and performance from pre-

vious tasks.

2) Through experimentation, it was validated that

the proposed modulation strategy can adaptively ad-

just stiffness levels to provide appropriate assistance,

thereby facilitating bilateral arm rehabilitation.

II. PVSED

The propose control strategy for bilateral upper

limb rehabilitation is evaluated by using an upper

limb rehabilitation robot, named as powered variable

stiffness exoskeleton device (PVSED), as shown in

Fig. 1.

Fig. 1. PVSED with integrated VSM·.

The PVSED is designed as a portable, wearable

robot for upper limb rehabilitation. It features three

passive degrees of freedom (DoF) at the shoulder

joint and one active DoF at the elbow joint. The

elbow joint is connected to a pulley system driven by

a direct-current brushless motor via cables, allowing

the robot to assist with both elbow flexion and ex-

tension movements. Additionally, a variable stiffness

mechanism (VSM), illustrated in Fig. 2, is integrated

into the elbow joint. This mechanism is actuated by a

compact direct-current brushless motor, enabling the

stiffness of the elbow joint’s movement to be adjusted

by altering the position of the spring.

Fig. 2. The model of the variable stiffness mechanism.

III. ADAPTIVE STIFFNESS CONTROL

A. Control strategy

Bilateral upper limb rehabilitation uses the motion

of the healthy arm as a reference trajectory for guid-

ing the affected arm. Rehabilitation robots provide

assistance to help the affected arm mirror the healthy

arm’s movements, thereby promoting motor relearn-

ing. This approach effectively utilizes the remaining

motor ability of individuals with hemiplegia, offering

a straightforward yet effective training strategy. Vari-

able stiffness actuators are particularly well-suited for

this rehabilitation method, as they enable compliant

human-machine interaction and allow the level of

assistance to be adjusted according to the needs of

different users.

In this section, a EMG-driven and adaptive

oscillator-based stiffness modulation strategy for

robot-assisted bilateral upper limb rehabilitation is

presented. The flow chart of the control system is

presented in Fig. 3. The movement of the healthy

side is used as the reference trajectory for the PSVED

through a PID controller to achieve the position

tracking. The PSVED provides assistance to affected

side of arm with a specific stiffness. The stiffness of
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Fig. 3. The flowchart of the proposed control strategy.

the PVSED is determined by an adaptive stiffness

modulation which is adjusted by the motion error

between two arms and the sEMG signal from the

healthy side at the phase of previous cycles.

B. EMG-based muscular stiffness model

Fig. 4. The musculoskeletal model of elbow joint.

In this paper, muscles are considered as a serially

connected spring-damper combination and a spring,

representing the active force generated by the muscle

and the passive force by the muscle/tendon structures,

respectively [16]. For the joint of elbow, there are

two main muscles, namely biceps brachii (BB) and

triceps brachii (TB). And the upper limb equivalent

model is shown in Fig. 4. These two agonist and

antagonist cooperated together to achieve flexion and

extension of elbow joints. Moreover, the stiffness of

the elbow joint is associated with the sum of the

torques generated by the agonist and antagonist.

The stiffness of the joint is linearly correlated with

the sum of the torque applied on the joint, therefore

the stiffness of the joint can be represented as:

Kjoint(ϕ) = α ·
n

∑
i=0

|τi|+β (1)

where α and β are two constants which depends on

the intensity of the task and the subjects, τ is the

torque generated by the muscle. The calculated stiff-

ness by using the above method is used to generate

a reference stiffness profile in a task. This model and

its parameters have been investigated in a previous

research by our team [5].

C. AO-based frequency and phase estimation

In order to generate a phase-based stiffness profile

and adjust the stiffness level based on the phase of

the task. It is necessary to detect the frequency and

phase of a task in real time. AO was proposed by

Righetti [17] and it was widely used to extract the

amplitude, phase and frequency of quasi-periodic sig-

nals for control of lower limb robots and cancelling

tremors of surgeons. The AOs can synchronize with

periodic signals and track the frequency and phase

of the target signal without delay. The estimated

parameters were used to reconstruct an approximate

signal. The residual between the estimated and target

signal are used to adjust the parameters of the AO to

adapt to the target signal. An AO can be described

by the following formulas:

ṙ = (μ − r2) · r+σ ·F · cosϕ (2)

ϕ̇ = ω − σ
r
·F · sinϕ (3)

ω̇ =−ε ·F · sinϕ (4)

ȧ = δ ·F · r · cosϕ (5)

y = a · r · cosϕ (6)

where r, ϕ , and ω are the amplitude, phase and

frequency of the oscillator, respectively. a · r is the
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amplitude of the reconstructed signal. F is the dif-

ference between the reconstructed signal and target

signal. y is the reconstructed signal by the AO. The

learning speed is adjusted by the constants of μ,ε,σ ,

and δ .

A single AO is used in this research to track the

frequency and phase of the task, which involves only

elbow flexion and extension movements, as the elbow

angle profile approximates a sinusoidal wave. In the

model, r represents the amplitude of elbow joint

angle, ϕ represents the phase of a curl movement,

and ω represents the frequency of a curl movement

of elbow joint, y represents the elbow joint angle.

D. Stiffness adaptation rule

In order to adapt to the need of users and the

intensity of the task, a stiffness adaptation rule is

proposed in this paper. And the stiffness of the robot

can be represented as:

K̄ joint(ϕ) = Kjoint(ϕ)+E ·
n

∑
i=n−m

e(i) (7)

where K̄ joint(ϕ) is the actual stiffness of the robot at

the phase of ϕ . e(i) is the motion error in the i-th
cycle of the task at the phase of ϕ . R is a constant

which can adjust the change ratio of the adaptation.

The stiffness corresponding to a gait phase is

adjusted by the motion errors, which is defined as

the elbow joint angle difference between the reference

trajectory and the actual trajectory, in the past three

cycles of the task.

IV. EVALUATION WITH AN EXPERIMENT

A. Experimental protocol

Two subjects joined the experiment for the evalu-

ation of the proposed adaptive stiffness modulation

bilateral training strategy. In this experiment, the

PVSED was attached to the users’ right arm. The

right arm of users is considered as the affected side

of arm and the left arm is the healthy side in this

bilateral training experiment.

The overall experimental set up is presented in

Fig. 5. The EMG signal was captured by using the

electrodes and a sEMG device from the BB and TB

of the left arm. The EMG signals were processed

on-line and were used for generating a reference

elbow joint stiffness profile by using the same method

proposed in a previous research [5]. Three IMU

sensors (GY 25T) were attached to the right and

left wrist of a subject respectively for obtaining the

motion trajectory of forearm during the experiment.

The stiffness of the VSM device integrated into the

PVSED device was calculated by using a curve from

the position of the pivot and the stiffness of the VSM

which was proposed in a previous research of our

group [5].

Fig. 5. The experimental setup.

Subjects were instructed to perform elbow flexion

and elbow extension movement with their both arms.

In order to examine the adaptive stiffness modulation

strategy, a plastic band was attached to the right wrist

of the user and the plastic band was exerting pulling

force when the elbow joint angle was less than 0◦.

Therefore, the varying need for the stiffness of the

elbow joint was generated within in a curl task.

B. Experimental results

The stiffness determines the level of freedom of the

movement during the curl movement. The movement

of the affected side of the user can be different from

that of the healthy side with a low stiffness, while

the bilateral movement are almost identical with a

high stiffness. The low stiffness allows the user to

complete the curl movement with their own effort.

The average tracking error and the maximum flexion

angle of the affected arm are shown in TABLE I.

The movement profile of the healthy side of arm

(HS), the main frame of PVSED, and the affected

side (AS) in the case of low stiffness are shown in

Fig. 6. The difference between the robot’s main frame

and the affected limb was considerably larger than
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under other conditions. Around the 13-second and 26-

second marks, the maximum elbow flexion angle is

approximately 4◦ lower than that of the healthy arm.

This reduced range of motion during rehabilitation

can lead to less effective training, especially for post-

stroke patients suffering from a stiff elbow joint.

In contrast, the high stiffness mode, as shown in

Fig. 7, kept the affected arm closely aligned with

the reference trajectory, ensuring the full range of

motion during training. However, in this mode, the

robot operated in a passive manner, with the affected

arm merely following the robot’s movements without

active participation in the training.

As for the proposed method, as shown in Fig. 8,

it kept a balance by using adjustable stiffness. It

ensured the necessary range of motion during training

while reduced stiffness when appropriate to achieve

an AAN rehabilitation strategy.

Fig. 6. Position tracking with low stiffness

Fig. 7. Position tracking with high stiffness

TABLE I

EXPERIMENT RESULTS

Ave. tracking error (◦) Max. flexion angle (◦)

High stiff. 6.13 ± 3.47 14.96
Low stiff. 2.89 ± 2.11 25.05
Proposed 3.43 ± 2.66 25.33

V. DISCUSSION

The proposed variable stiffness control method

adjusts the stiffness of an upper limb wearable robot

Fig. 8. Position tracking with the proposed strategy

to implement an AAN rehabilitation strategy. While

previous research, such as the task performance in-

dex (TPI) proposed by Yang et al. [13], has also

explored tuning stiffness to achieve AAN, our method

introduces a key distinction by leveraging the cyclic

nature of rehabilitation motions to adjust the level

of assistance. Unlike previous approaches that react

to the user’s performance in real-time, our method

proactively adjusts the assistance level before motion

errors escalate, ensuring a smoother and more precise

level of support.

Although the proposed method may appear similar

to those that adjust stiffness based on joint angles,

there are fundamental differences. Firstly, the pro-

posed method adjusts stiffness based on the phase of

movement, independent of the actual range of motion.

This phase-based approach offers greater robustness

during training, allowing the system to adapt even

when the user’s range of motion changes due to

fatigue or other factors. Secondly, in the context of

multi-joint upper limb rehabilitation, movements are

often complex, and the phase of movement provides a

more accurate indicator than joint angles alone. This

enhanced accuracy improves the overall effectiveness

of the rehabilitation process.

In this research, stiffness profiles are tuned at

different phases, which can lead to abrupt changes

in assistance, causing rapid shifts in assistance. This

discontinuity may be uncomfortable or even harmful

to users in certain scenarios. As a next step, a

continuous function will be developed to represent

the stiffness profile. The motion errors and EMG

signals of users will be used to dynamically shape this

continuous function [18], allowing smooth transitions
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in assistance. Additionally, the current stiffness tuning

method has been applied only in a one-dimensional

setting. Expanding its application to multi-degree-of-

freedom rehabilitation robots remains a challenge but

is crucial for advancing the effectiveness of upper

limb rehabilitation. In the multi-joint rehabilitation

scenarios where the joint angle profiles are not sinu-

soidal, the single AO used in this study is insufficient;

thus, a multi-AOs approach will be required.

VI. CONCLUSIONS

This paper presents an adaptive stiffness mod-

ulation strategy that leverages muscular activation

and motion errors from previous movement cycles

to achieve assist-as-needed (AAN) rehabilitation. In

rehabilitation sessions, movements or tasks are often

cyclic, designed to enhance joint movement abil-

ities or task performance. The proposed strategy

determines the required level of assistance by an-

alyzing performance in prior cycles. A preliminary

experiment involving two subjects demonstrated that

this stiffness modulation method effectively adjusts

stiffness levels according to the user’s needs, thereby

facilitating AAN rehabilitation.

This study represents a significant advancement in

the development of adaptive stiffness control strate-

gies for upper limb rehabilitation robots. In future

work, the proposed method will be applied to robots

with higher degrees of freedom and more complex

rehabilitation tasks.
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